
ELSM: Evidence-based Line Segment

Merging

Naila Hamid, Nazar Khan and Arbish Akram

Computer Vision & Machine Learning Group, Department of Computer Science,

University of the Punjab, Lahore, Pakistan

Email: nazarkhan@pucit.edu.pk

Existing line segment detectors break perceptually contiguous linear structures

into multiple line segments. This can be offset by re-merging the segments but

existing merging algorithms over-merge and produce globally incorrect segments.

Geometric cues are necessary but not sufficient for deciding whether to merge

two segments or not. By restricting the result of any merging decision to

have underlying image support, we reduce over-merging and globally incorrect

segments. We propose a novel measure for evaluating merged segments based

on line segment Hausdorff distance. On images from YorkUrbanDB, we show

that our algorithm improves both qualitative and quantitative results obtained

from four existing line segment detection methods and is better than two existing

line segment merging methods. Our method does not suffer from inconsistent

results produced by four recent deep learning based models. The method is

easily customisable to work for line drawings such as hand-drawn maps to obtain

vectorised representations.
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1. INTRODUCTION

Lines and edges offer crucial perceptual cues for scene

understanding. This can be seen from our ability

to understand comic strips drawn without any colour

information. In the fields of image processing and

computer vision, line segments serve as fundamental

low level features used to perform many high level tasks

such as 3D reconstruction [1], structure from motion

[2, 3, 4], stereo [5, 6], visual odometry [7] and vanishing

point estimation [8, 9]. In such works, line segments

are not used directly. Multiple line segments need to

be grouped together and refined. Small line segments

that do not represent any contiguous underlying image

structure need to be discarded. This is because existing

line segment detectors

• break line segments at intersections, and
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• detect two line segments for a single line due to

large gradient on both sides of the line.

Merging of detected line segment is useful for different

applications such as unmanned aerial vehicle landing

[10] and chessboard detection [11].

In most works, results are presented by overlaying

the detected line segments as one-pixel thick lines on

the original image. This can tend to hide the above-

mentioned problems. Firstly, a line break event is

very often contained in a one-pixel radius. Visual

inspection on a coarse scale will hardly identify such

cases. The line breaking artefacts are illustrated in

Figure 1 by drawing line segments with emphasised

endpoints. Such behaviour is concealed by not

highlighting the endpoints while drawing line segments

in the same colour. Secondly, since the human

perceptual system automatically fills in gaps and

ignores redundant information, coarse visual inspection,

once again, will underestimate the severity of the

problem. Figure 1 visually illustrates both of the

aforementioned weaknesses. Any computer algorithm

that takes detected line segments as inputs is now left

with the task of ascertaining which of these broken

segments corresponded to which perceptually consistent

line segment.

An obvious solution to these problems is to merge

individual line segments in order to recover longer,

contiguous segments [12, 13, 14]. However, this raises

two fundamental questions:

1. Validity of line pair merging: when any pair

of segments is merged, how can the validity of the

merged segment be checked?

2. Validity of continual mergings: when already

merged segments are iteratively considered for

further mergings until convergence, how can the

validity of the eventual line segments be checked?

Such questions have not been explicitly targeted by

existing merging methods. The weaknesses of the

existing methods can be summarised as follows.

W1: Iterative mergings can sometimes eventually pro-

duce longer segments that are neither supported

geometrically by any of the original smaller seg-

ments nor chromatically by underlying image data

(Figure 2).

W2: Methods are biased towards natural imagery

making them unsuitable for vectorisation of line

drawings which yield two overlapping parallel

segments for each visible line (Figure 3).

In this work, we address both weaknesses as follows.

S1: Supplement geometric information by chromatic

information. We use image evidence for validating

line segments so that any segments not supported

by underlying image intensities are rejected.

S2: Supplement end-points by additional reference

points. While end-points are sufficient for defining

a segment, they are not sufficient for deciding the

proximity between different segments.

S3: For line drawings that yield redundant segment

detections, we introduce an overlap tolerance to

remove redundancy.

By employing line segment evidence and additional ref-

erence points for grouping and for accepting or reject-

ing merging decisions, our proposed evidence-based line

segment merging (ELSM) algorithm produces longer,

perceptually accurate segments that are still faithful to

the underlying image data. Our method is suited for

both natural imagery as well as line drawings.
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FIGURE 1: Left: Line segment detectors break perceptually consistent line segments into multiple segments. When
overlayed using a single colour, the breaks cannot be easily seen. However, by emphasising their endpoints, we can
observe the breaks. Right: For line drawings, line segment detectors i) break segments at intersections and ii) yield
two detections per segment due to gradient change on both sides of a single segment. Such double detections are
counter-productive for vectorisation of line drawings.

We also address an additional problem related to

the evaluation of line segments against ground truth.

Existing datasets have an annotation bias so that

not all line segments are marked in the ground

truth. For instance, YorkUrbanDB [17] predominantly

contains ground truth segments at so-called Manhattan

orientations. They correspond to visually significant

boundaries in building facades. As can be seen
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1005 LSD segments 904 LSM segments

699 LSD segments 540 LSM segments

FIGURE 2: Weakness (W1) of current merging
approaches. The Line Segment Merging (LSM)
algorithm [12] iteratively combines broken segments
detected by the Line Segment Detector (LSD) algorithm
[15]. However, it fails to control for the global
correctness of continual mergings. The highlighted
LSM segments (thick red lines) represent merged line
segments that have moved away from the original
segments and therefore no longer represent any
underlying line segments in the input image.

Original LSD Multiscale LSD LSM

FIGURE 3: Weakness (W2) of current merging
approaches on line drawings that consist of roof edges.
LSD [15] detects excessively broken segments on both
sides of each line. The Multiscale Line Segment
Detector (Multiscale LSD) algorithm [16] produces
longer segments but still on both sides. The LSM
algorithm [12] merges some but not all instances of
such perceptually redundant lines. Such instances
become computational as well as semantic baggage
for downstream tasks such as vectorisation and image
understanding.

from Figure 4, numerous genuine line segments with

strong underlying image gradients are left unmarked.

The ground truth of the Wireframe dataset [18] also

marks object frame boundaries. As a consequence,

any edge-strength-based line segment detector will be

unfairly evaluated using such ground truth. Therefore,

we propose a quantitative evaluation scheme that

compares merged segments against detected segments

based on Hausdorff distance from ground truth.

Incompleteness of the ground truth is neutralised

when merged segments are compared with detected

segments. Numerical results show that the proposed

ELSM algorithm avoids both over-segmentation and

over-merging and produces line segments that are closer

to ground truth segments marked according to human

perception.

The rest of the paper is organised as follows.

Section 2 surveys line segment detection and line

segment grouping and merging techniques with existing

evaluation methods. In Section 3, we present our

line segment evidence-based grouping and merging

technique. Section 4 describes our proposed evaluation

metric. Our experimental setup is described in Section

5 whose results are analysed in Section 6. Concluding

thoughts and future directions of research are presented

in Section 7.

2. LITERATURE REVIEW

2.1. Line Segment Detection Techniques

Starting from the top-down approach of the classical

Hough Transform [19], line detection has evolved from

the bottom-up approaches such as LSD [15], Edge

Drawing Lines (EDLines) [20], and Fast Line Segment

Detector (FLD) [21] to recent approaches that learn

to detect lines given training images with marked

ground-truth line segments [22, 23, 24, 25, 26, 27, 28].

All existing detection methods produce over-segmented

(broken) lines that require post-processing in order to
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50 ground truth segments 29 ground truth segments 208 ground truth segments

FIGURE 4: Manhattan bias and incompleteness of ground truth marked in YorkUrbanDB [17]. Many valid segments
with strong underlying image gradients are not marked since they do not belong to significant building boundaries.
For example, vehicles, pavements, small light poles, and small window boundaries are ignored.

be useful for higher level tasks (see Figures 1 and 11).

While learning-based methods tend to reduce the over-

segmentation phenomenon, they can sometimes yield

inexplicable false positives as well as false negatives

that a pure gradient-based detector would never suffer

from (see Figure 14). Furthermore, they are trained on

datasets with a Manhattan bias – ground-truth lines

are marked only in Manhattan directions while many,

otherwise valid, non-Manhattan lines are left unmarked.

Some methods have enforced segment grouping

within the line detection process. For example,

restricting Hough voting to lines with spatio-angular

proximity in connectivity enforcing Hough Transform

[29], edge linking between clusters of collinear points

in Canny Lines [30], and combining image and Hough

space to improve segment localisation in the Markov

Chain Marginal Line Segment Detector (MCMLSD)

[31].

2.2. Use of Merged Line Segments

Line segments play an important role in 3D reconstruc-

tion. For single-view reconstruction [32], pairs of inter-

secting line segments are exploited. However, segments

detected via LSD [15] are excessively broken and need

to be extended in order to fill small gaps so that they

intersect. For estimation of vanishing points [9], line

segments are grouped together in order to narrow down

the space for computational strategies.

For extraction of line networks in noisy low contrast

images [33], lines are linked together via directional

propagation to reconstruct connectivity of the network.

For segmenting land regions in images of historical

cadastral maps [34], land boundaries are extracted by

connecting the endpoints of broken line segments. Gaps

between segments are filled using geometric and image

based proximity.

For chess board and chess piece recognition [11], line

segments detected via CannyLines [30] are excessively

broken and therefore nearly collinear segments are

merged to construct longer segments.

It can be seen that previous efforts treat the merging

problem as a means to a specific end. In contrast,

we treat it as a single, comprehensive, perceptual

problem. As a result, our solution will be applicable

to a wider array of computer vision problems compared

to previous works that are limited to specific use-cases.
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2.3. Line Segment Grouping and Merging

Techniques

If line detection is performed using the Hough

transform, then segments can be grouped together in

the Hough voting space to form a base line [13, 14].

Then segments with proximal base line projections can

be merged together. In the Multiscale LSD [16], line

segments are detected and iteratively merged across

scales to produce longer segments.

Gestalt principles have also been used for deciding

mergeability of segments [35]. In the LSM method from

[12], perception-based, adaptive, geometric grouping

and merging criteria were introduced for iterative line

segment merging. Adaptive, spatio-angular proximity

measures were used along with parameters to relax or

tighten the merging process. However, use of local

geometry alone can lead to globally incorrect mergings.

Incremental improvements to the LSM method can

be found in human vision inspired multi-scale line

segments merging and filtering [36] and a perceptually

accurate line segment detection approach (PLSD) [37].

The present work also builds on LSM by incorporating

image evidence in addition to geometry in order to

produce globally correct mergings.

2.4. Evaluation Techniques

Detected vs. Ground Truth Segments The

MCMLSD method [31] produces a probabilistically

ranked list of detected segments and employs the Hun-

garian algorithm to compute one-to-one correspon-

dences with ground truth segments. Such correspon-

dences are then used to compute precision-recall curves.

In PLSD [37], the authors also compute precision, re-

call, and F1 scores but do not use one-to-one correspon-

dences. Instead, they consider a ground truth segment

to have been correctly detected if its intersection with

detected segments exceeds a threshold.

Deep learning based detectors [22, 23, 26, 38] use

structural average precision (SAP) in which correspon-

dences are established by thresholding squared Eu-

clidean distance between end-points of detected and

ground truth segments. Since deep learning models pro-

duce probabilistic outputs, the detected segments are

also ranked before computing SAP values.

It must be noted that all evaluation metrics based

on correspondences require a threshold to determine

true and false positives. Metrics that require detection

scores for ranking of segments are also only applicable

to probability based detectors. They are not directly

applicable to generic detection methods that do not

rank the detected segments. Moreover, when detected

segments are merged, such scores lose their significance.

A comparison of different evaluation methods is

presented in [39] which also introduces a straight

line segment distance measure that combines closest

distance, modified line segment Hausdorff distance

[40, 41], and translation distance between segments to

compare two sets of line segments.

Merged vs. Detected Segments For quantitative

evaluation of the improvement of merged segments over

detected segments, the LSM method [12] proposed to

compute a Euclidean distance measure between merged

and ground truth segments. The same measure was

then computed between detected and ground truth

segments. The ratio of the two measures was used as

the final measure of success of mergeability.

Since precision-recall based measures involve thresh-

old settings in their evaluation, we propose a parameter-

free, novel quantitative evaluation criterion by combin-
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ing and modifying ideas from [39, 41], and [12].

3. METHODOLOGY

In this section, we present our novel, evidence based

grouping and merging technique. Grouping and

merging algorithms use a set of line segments detected

by any of the state-of-the-art methods and attempt

to produce perceptually more accurate line segments.

This means that detected line segments are implicitly

considered to be correct. Detected segments might be

broken, or some actual lines in the image might be

missed. However, a detected line segment is considered

to represent a true underlying image structure. In other

words, detected line segments are considered to contain

no false positives.

Care must be taken when defining correct and

incorrect lines. A line may be detected at the

correct image region but with a slightly modified angle

due to the numerous numerical approximations such

as discretisation of image intensities and the size,

precision and choice of gradient kernels. While small

imperfections in angle of a small line segment might

not hold much perceptual weightage, it can significantly

affect line segment merging decisions, if not handled

properly.

In order to verify merging decisions, we impose two

conditions:

1. Local: merging of a pair of line segments should

produce a segment that is geometrically close to

the longer of the two original line segments, and

2. Global: iterative merging of line segments should

produce a segment that is supported by the

underlying image structure.

We bias decisions towards longer line segments since

they hold more perceptual weightage. As highlighted

in Figure 2, existing methods that do not control both

local and global behavior of merged line segments can

produce globally incorrect line mergings.

In the following two subsections, we discuss grouping

and merging along with our proposed line segment

evidence approach. Table 1 details the notations used

in our explanation. Algorithm 1 describes the whole

method in pseudocode. Our algorithm takes two inputs,

i) an image, and ii) line segments extracted from the

image by any detector. Our algorithm then applies

angular and spatial proximity measures to group line

segments. After grouping, pairs in the group are tested

and passed through geometry and image evidence based

mergeability criteria to obtain merged line segments.

To start the process, we first sort the detected line

segments D in descending order of length. This is

because longer line segments are i) more meaningful,

ii) more reliable, and iii) come from image regions

with continuously strong gradients. The set of sorted

segments are denoted byM and we select the segments

in order of decreasing length. Let P denote the selected

line segment.

3.1. Grouping Line Segments

For line segment P , we sequentially construct a spatio-

angular proximal group GMP consisting of segments with

i) angles similar to P and ii) lying in close spatial

proximity to P .

Angular Proximity. First, an angular proximal

group GMP is extracted from M. The line segments

in GMP are the ones that pass an angular proximity

threshold with respect to P as

GMP = { ∀Q ∈M : | θQ − θP |< τθ } (1)
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(a)

  

   

(b)

FIGURE 5: Zone Zi of spatial proximity around a point pi on some segment P is defined as the box with absolute
distance less than τ∗s along either axis. Other segments with an end-point lying within zone Zi can be considered
spatially proximal to segment P .

where θP and θQ are the angles of line segment P and

Q respectively. The absolute angular difference for each

pair (P,Q) is thresholded so that GMP can have only

those line segments which are in close angular proximity

with respect to P .

Spatial Proximity. For spatial proximity, a user-

defined parameter 0 ≤ πs ≤ 1 is used to take a fraction

of the length of the selected segment as

τ∗s = πslP (2)

where lP is the length of P and τ∗s is an adaptively

determined spatial proximity threshold calculated

separately for every segment P . Compared to shorter

lines, longer lines will be allowed to merge with more

distant line segments.

Threshold τ∗s determines a spatial proximity zone

around any point pi belonging to segment P as shown

in Figure 5a. Other segments with an end-point lying

within zone Zi can be considered spatially proximal to

segment P . In the following, we describe our approach

using three proximal zones along segment P . The

method remains unchanged for more proximal zones.

End-points are not enough. The top row of Figure

5b demonstrates a special case where segments Q1 and

Q2 both escape spatial proximity checks even though

they lie close to segment P . The reason is the use of

proximal zones only around the end-points of P . Such a

situation can be avoided by using one or more additional

proximal zones along P as shown in the bottom row

using a proximal zone around the mid-point of P .

Each angular proximal segment Q ∈ GMP can be

filtered further in terms of spatial proximity by checking

if any end-point of Q lies within any of the proximal

zones along P . This corresponds to simply checking

pairwise absolute distances between reference points on

P and end-points of Q.

Table 1 describes our notation when using the mid-

point p3 as an additional reference point on P . Figure

6 shows the pairwise absolute distances used to decide

proximity. Let index i denote points along segment P

and let index j denote the two end-points of segment

Q. Vertical and horizontal distances can be computed

as

rij =
∣

∣pir − qjr
∣

∣ (3)

cij =
∣

∣pic − qjc
∣

∣ (4)

First, only vertical distances are computed and used to

filter line segments in set GMP (obtained via filter (1))
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TABLE 1: Notation used in the paper.

Input
D Set of detected line segments
w, h Width and height of input image

User-defined parameters
πs ∈ [0, 1] Spatial proximity.
πt ∈ Z

+ Thickness for line segment evidence
πr ∈ Z

+ Number of reference points for spatial proximity

User-defined thresholds
τθ > 0◦ Angular proximity
τo ∈ [0, 1] Overlap tolerance
τe ∈ [0, 1] Line segment evidence

Processing
M Set of merged line segments
P Longest line segment
τ∗

θ Adaptive angular proximity threshold
τ∗
s Adaptive spatial proximity threshold
G

M
P Spatio-angular proximal group with respect to P

from M (used in merging)
G

D
P Spatio-angular proximal group with respect to P

from D (used in evidence)
Q Segment from G

M
P considered for merging with P .

Line segment pair (P,Q)
(θP , θQ) Angles of pair (P,Q)
(lP , lQ) Lengths of pair (P,Q)
d Distance between closest endpoints of pair (P,Q)
(m1,m2) Farthest endpoints of pair (P,Q)
M Merged line segment
p1 First endpoint (p1r, p1c) of line segment P .
p2 Second endpoint (p2r, p2c) of line segment P .
p3 Mid point (p3r, p3c) of line segment P .
q1 First endpoint (q1r, q1c) of line segment Q.
q2 Second endpoint (q2r, q2c) of line segment Q.

in terms of vertical spatial proximity from P as

GMP =







Q ∈ GMP :
∨

i,j

(

rij < τ∗s
)







(5)

The resulting segments in GMP are then filtered again

so that segments with endpoints in close horizontal

proximity to P are allowed to remain as

GMP =







Q ∈ GMP :
∨

i,j

(

cij < τ∗s
)







(6)

The sequence of the three filters (1), (5), and (6) yield

the set GMP of line segments that are in close angular

and spatial proximity to segment P .

Note on speed-ups Filtering in terms of absolute

FIGURE 6: Absolute pairwise distances along rows and
columns between three reference points on segment P

and two end-points of segment Q.

distance instead of Euclidean distance is faster since it

avoids multiplicative operations. Moreover, sequential

filtering (first angular (1), then vertical (5), then

horizontal (6)) reduces the number of segments to be

checked by each subsequent filter. This also results in

speeding up the algorithm.

After forming the group GMP , each of the segments

can be iteratively considered for merging with segment

P . This is described next.

3.2. Merging Line Segments

After grouping line segments based on angular and

spatial proximity, we now introduce merging criteria

based on geometry and line segment evidence. In

the rest of the paper, whenever two line segments are

considered, P will denote the longer segment and Q will

denote the shorter segment.

Decision. Each segment Q from the spatio-angular

proximal group GMP is considered for merging with

segment P . For a pair of line segments (P,Q), overlaps

along both coordinate axes are computed as shown in
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FIGURE 7: Overlapping geometry of the segments.
The overlap ox along x-axis is the intersection of
projection of the segments P and Q along x-axis i.e

px and qx respectively. Similarly, the overlap oy along
y-axis is the intersection of projection of the segments
P and Q along y-axis i.e py and qy respectively.
The maximum of both the overlaps is used to decide
mergeablility of the segments.

Figure 7. Normalised overlap is computed as

o =



















ox
qx

ox > oy

oy
qy

otherwise

(7)

To avoid merging of almost parallel, significantly

overlapping segments, the normalised overlap is

thresholded as

o≤τo (8)

so that parallel segments (P,Q) are merged only if

their overlap is small. For highly overlapping segments,

spatial proximity threshold τ∗s from Equation (2) is

scaled down as

τ∗s = πslP (1− o) (9)

in order to merge spatially close segments only.

Customisation for line drawings. To allow merging of

parallel, highly overlapping segments, such as those

detected on both sides of a single segment in line

drawings, i) the overlapping threshold τo can be set to

its maximum value, and ii) spatial proximity threshold

τ∗s can be scaled down so that only nearby segments are

merged. Figure 8a demonstrates a typical scenario in

line drawings whereby segments P and Q1 lie on the two

sides of a single visible line segment. It is perceptually

acceptable to merge them. However, segment Q2 will

have the same normalised overlap as Q1 and can only

be differentiated by considering spatial distance.

After passing overlapping criterion, a spatial proxim-

ity filter based on Euclidean distance is applied on the

pair (P,Q). Let dij be the Euclidean distance between

reference point pi on segment P and endpoint qj on

segment Q

dij =
∥

∥pi − qj

∥

∥ (10)

where i ∈ {1, . . . , πr} and j ∈ {1, 2}. In this paper, the

number, πr, of reference points on P was set equal to

either 2 or 3. The reference points on P are defined as

follows:

1. p1 and p2 are the endpoints.

2. p3 and onwards are successive bisections.

For πr = 3, Figure 8b shows the 6 pairs of distances

between reference points on P and endpoints of Q. The

closest distance between any reference point on P and

endpoint on Q can be calculated as

d = min
ij

dij (11)

Now d can be used to check whether both line segments

are close enough or not using adaptive spatial proximity

as

d < τ∗s (12)

If it passes the criterion, the adaptive angular proximity
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is computed further.

1. relative length of shorter line,

2. relative spatial distance, and

3. angular difference

Accordingly, perception of non-mergeability (PoN) of

(P,Q) can be defined as

PoN =
lQ

lP
+

d

τ∗s
(13)

which is just the sum of the normalised value of the

length of the shorter segment and the normalised value

of the distance between closest pair of points. Both

normalisations are performed by dividing the maximum

possible values. The range of values for PoN is from 0

till 2. For mergeable segments, it will be closer to 0

and for non-mergeable segments it will be closer to 2.

An adaptive threshold for angular difference between P

and Q can be computed as

τ∗θ =

(

1−
1

1 + e−2(PoN−1.5)

)

τθ (14)

where τθ is a user-defined maximum allowable angle

between lines that can be merged. In this way, τ∗θ

becomes a non-linearly controlled, length-and-spatial-

distance-adaptive threshold for allowable angle between

segments P and Q. For segments considered to be

perceptually mergeable (low value of PoN), angular

threshold τ∗θ will be close to its maximum allowable

value τθ. As a result, merging will be possible

even when angular difference is close to its maximum

allowance. For perceptually less mergeable segments,

angular threshold τ∗θ will be adaptively restricted to a

smaller value so that merging is possible only if the

angles match closely. The line segments P and Q will

TABLE 2: Differentiating between merging scenarios of
Figure 8c by projecting endpoints of shorter segment Q
onto the larger segment P .

Non-overlapped Both endpoints project outside P

Overlapped Only one endpoint projects inside P

Subsumed Both endpoints project inside P

be merged if
∣

∣θP − θQ
∣

∣ < τ∗θ (15)

Merged Segment Once it is decided that segments

P and Q can be merged into a new segment M ,

the endpoints of M need to be found. Figure

8c demonstrates the three possible merging scenarios

relative to the longer segment P . In non-overlapped and

overlapped mergings, M is formed by connecting the

farthest endpoints of P and Q. In subsumed merging,

the shorter segment Q is absorbed into P and therefore

P becomes the merged segment. The three scenarios

can be differentiated by projecting the endpoints of Q

onto segment P and selecting the relevant case from

Table 2.

Validation After having a merged line segment M

with the endpoints as m1 and m2, it is further passed

through two more validation steps.

Angle: In the first step, the absolute angular

difference between the merged line segment M and the

original longer line segment P is thresholded as

|θP − θM | <
τθ

2
(16)

where the angular difference threshold is reduced by

half to ensure that the merged line segment M does

not move too far from the original segment P .

Line segment evidence: Merged segments that pass

the angular threshold are passed through an additional

filter that incorporates evidence from existing line

The Computer Journal, Vol. ??, No. ??, ????
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(a) (b)

Non-overlapped Overlapped Subsumed

(c)

FIGURE 8: (a) Segments Q1 and Q2 have the same normalised overlap with segment P but only Q1 can be merged
into P in a perceptually satisfactory manner. Segment Q2 is too far. (b) Six Euclidean distances between reference
points of segment P and endpoints of Q represented via dashed lines. Closest pair of points corresponds to the
minimum of these distances. If P and Q are merged then farthest pair of endpoints (m1,m2) will be the endpoints
of the merged segment. (c) All possible merging scenarios for two segments P (blue) and Q (red) fall under three
cases. For non-overlapped and overlapped mergings, the merged segment (green) consists of the farthest endpoints
of P and Q. For subsumed merging, the shorter segment Q is absorbed into the longer segment P which becomes
the merged segment.

segments. The basic idea is to force the merged segment

M to lie close to the set of original input segments.

This way a newly merged segment cannot be accepted

unless it lies over pixels through which a significant

number of original line segments pass. As soon as M

strays towards regions that have little support from the

underlying image, it is rejected.

To gather evidence from the underlying image, we

draw a binary evidence image EGD

P
as follows

1. Initialise EGD

P
as an empty array of size h×w (size

of input image).

2. On EGD

P
, draw each line segment in GDP using line

thickness 2πt + 1 pixels.

The set GDP is used so that unrelated but intersecting

segments from the original set D do not interfere with

evidence. By unrelated, we mean segments that are far

from P in terms of angular and/or spatial proximity.

After computing the binary evidence image EGD

P
, we

can compute the evidence eM supporting the merged

segment M as follows

1. Along segment M , count number of on-pixels in

EGD

P
.

2. Divide by length of M .

Computed this way, eM lies between 0 and 1 and

can now be thresholded to determine whether M is a

valid merged line or not. Accordingly, we employ a

user-defined threshold τe to filter merged line segments

that have strayed away from the underlying original

segments. If M passes the criterion

eM > τe (17)

it is considered as a valid merged segment and replaces

segment P in set M so that any further processing

takes place on this merged segment. When all the

line segments are processed in GMP , a final merged line

segment will be reported as M . Now the process can be

repeated for the next longest line in setM until no line

segment remains to be merged. Algorithm 1 outlines

the pseudocode for the whole method and visualisation

of the pipeline is shown in Figures 9 and 10.

3.3. Computational Complexity

Time Complexity The upper bound of Algorithm 1

is explained here in terms of the number of detected
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Original segments. Green segment is P . Angular proximal group corresponding to segment P .

Angular and spatial proximal group GMP Evidence image EGD

P
corresponding to GDP (colour reversed)

Segments to be considered for merging Merged segment with evidence eM = 1

FIGURE 9: Visualising line segment grouping and merging steps. Spatial and angular proximity measures to group
line segments are applied for a selected segment P . Pairs in the group GMP are passed through geometry, perception
and evidence based criterion to get a merged segment M . (Best viewed in colour.)

line segments n. The algorithm converges if no merging

is performed in the repeat-until-loop. If even a single

merging is performed, the loop runs again for n − 1

segments. So, in the worst case, this loop executes n−1

times resulting in complexity of order O(n).

Sorting of segments inM takes O(n log n) time. The

iteration count for the first for-loop depends upon how

many segments were merged in the previous iteration.

If we consider the worst case, only two segments would

have been merged and there will be n− 1 segments left

including the merged segment. So the complexity will

be of order O(n).

The second for-loop iterates according to the number

of line segments in spatial and angular proximal group

GMP . In the worst case, it can have n− 1 segments and

thus the complexity will be of order O(n) again.

Therefore, worst case complexity of Algorithm 1 is of

order O(n(n log n + n2)) = O(n3) in the worst case of

all three loops. In practice, however, each of the three

loops reduces the number of segments by more than

1. For instance, |GMP | << |M| in the second for-loop.

Therefore, the algorithm takes much less than n3 steps

to converge, in practice.

Space Complexity Algorithm 1 has O(n+ hw) space

complexity due to the groups M,GMP ,GDP ,R, and

evidence image EGD

P
.

3.4. Comparison with LSM Algorithm

Since ELSM is built upon and improves the LSM [12]

algorithm, it serves as our main comparison baseline.

Here we demonstrate that what is common in both

methods and what is new in ELSM.

Grouping For forming spatioangular proximal groups,

angular proximity is used in the same same way but

spatial proximity is updated to have more reference

points. This results in more complete spatial proximal

groups. As demonstrated in Figure 5 the LSM

algorithm uses only two proximal zones at the endpoints
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Angular and spatial proximal group GMP
Evidence image EGD

P
corresponding to GDP (colour

reversed).

P
Q

Segments to be considered for merging.
Accepted merged segment with evidence

eM = 0.9479.

P

Q

Merged segment in row 3 is now P and considered for
merging with another Q ∈ GMP .

Rejected merged segment with evidence eM = 0.3571.

FIGURE 10: The use of image-based evidence prevents incorrect mergings that mere geometric reasoning cannot
prevent. Rows 1-3: Merged segment accepted because of underlying support from the original image. Row 4:
Merged segment rejected because of low support from the underlying image. (Best viewed in colour.)

while ELSM proposes further proximal zones.

Merging For merging line segments, the overlapping

idea from Figure 7, and Equations (7), (8) and (9)

provides more explicit control over the merging/non-

merging of parallel, overlapping segments. Close,

overlapping parallel segments may need to be merged

for line drawings but not for natural imagery.

As demonstrated in Figure 8b, closest point pair

between two segments is found by utilising an additional

midpoint p3 on the longer segment. The LSM method

uses the endpoints only. The additional midpoint allows

computing more accurate distances between segments.

Perception of non-mergeability (Equations (13), (14))

and angular proximity (Equation (15)) are the same in

both methods.

Validation In order to validate a merged segment,

angular validation (Equation (16)) is same in both

methods but ELSM introduces an additional evidential

validation. This eliminates a major weakness in

the LSM method whose local merging decisions can

eventually lead to a globally incorrect segment with

no underlying image support. In ELSM, any merged

segment without underlying image evidence is discarded

so that globally incorrect segments are never formed.

Complexity Both algorithms share the same O(n)3

time complexity. Space complexity of LSM is O(n)

while ELSM takes O(n+hw) space due to the additional

use of the evidence image EGD

P
.
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Algorithm 1 mergeLines

Data: Set of detected line segments D
h,w height and width of the image

User-defined parameters: πs, πt, πr

User-defined thresholds: τθ, τo,τe
Result: Set of merged line segmentsM
M ← D
repeat

n← |M|
M← sort lines inM in descending order of length
for P ∈M do

lP ← ∥P∥
τ∗s ← πslP
GMP ← spatio-angular proximal group from M
for segment P using filters (1), (5) and (6) (used
in merging)
GDP ← spatio-angular proximal group from D for
segment P (used in evidence)
EGD

P
← evidence image of size h× w

R ← ∅
for Q ∈ GMP do

M ← ∅
if lP < lQ then

swap(P,Q)
end

d← closest distance between endpoints of P
and Q (Equation (11))

o ← normalised overlap between P and Q

(Equation (7))
if o≤τo then

τ∗s ← πslP
else

τ∗s ← πslP (1− o)
end

if d < τ∗s then
τ∗θ ← compute adaptive angular thresh-
old (Equation (14))
if | θP − θQ |< τ∗θ then

M ← (m1,m2) (Figures 8b, 8c)
if | θP − θM |<

τθ
2 then

eM ← evidence value of M from
EGD

P

if eM > τe then
P ←M

R ← R∪Q
end

end

end

end

end

M←M\R
end

until |M| = n

4. QUANTITATIVE EVALUATION

METHODOLOGY

Given an image and three sets G,D,M of ground-

truth, detected, and merged segments, respectively,

we compare detections D and mergings M via their

line segment Hausdorff distances from ground-truth G.

We begin by defining a distance function between two

segments P and Q following [39]. Let d⊥PQ be the

directed perpendicular distance from the closest point

on P to line segment Q. We can define undirected

closest distance

CD(P,Q) = min(d⊥PQ, d⊥QP ), (18)

modified line Hausdorff distance

MLHD(P,Q) = min(lP , lQ)sin(| θQ − θP |), (19)

and translation distance

TD(P,Q) =
d11 + d12 + d21 + d22

4
−

lP + lQ

4
. (20)

They are aggregated to compute the straight line

distance

ST (P,Q) = CD(P,Q) +
MLHD(P,Q)

4
+ TD(P,Q)

(21)

which is asymmetric because of the asymmetry of the

modified line Hausdorff distance (19). A symmetric

distance between two segments P and Q can then be

defined as

dist(P,Q) = min(ST (P,Q), ST (Q,P )) (22)
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Then, following [41], directed Hausdorff distance

between sets G and D is defined as

h(G,D) =
1

∑

P∈G
lP

∑

P∈G

lP min
Q∈D

dist(P,Q) (23)

and undirected Hausdorff distance can be computed as

H(G,D) = max(h(G,D), h(D,G)) (24)

For a dataset of N images, each with ground-truth Gn,

detections Dn, and mergings Mn, following [12], we

compute the ratio

r =

∑N

n=1 H(Gn,Dn)
∑N

n=1 H(Gn,Mn)
(25)

If ratio r is greater than 1, then compared to detected

segments, the merged segments are closer to the ground-

truth on average. If r is less than 1, then merging is

inferior to the detected segments on average.

It must be noted that ratio r represents the im-

provement of merged segments over detected segments

in terms of undirected Hausdorff distances from the

ground truth. As mentioned earlier, existing ground

truths of line segment datasets are incomplete. How-

ever, ratio r neutralises any incompleteness of ground-

truth. This is because instead of just measuring the

distance of merged segments Mn from potentially in-

complete ground-truth Gn, it measures improvement in

that distance when compared with the original segments

Dn. Specifically, if a correctly detected segment in Dn

is missing in the ground-truth Gn, it will be unfairly

penalised by the numerator in Equation (25). How-

ever, the corresponding merged segment in Mn will

also be missing in Gn and will be similarly penalised

in the denominator. Therefore, potential incomplete-

ness in ground-truth will be neutralised. In addition,

this metric does not require any thresholds.

5. EXPERIMENTS

Datasets We test our novel, perceptually driven, and

evidence based grouping and merging ELSM technique

on images from YorkUrbanDB [17]. It includes 102

images (45 indoor, 57 outdoor) of urban environments.

The size of each image is 640 × 480 pixels. On

average, 118 ground truth line segments are marked per

image. However, the ground truth segments are mostly

marked in Manhattan directions so that other valid line

segments are not marked. As a result, the ground truth

under-estimates the actual number of line segments that

can reduce the validity of quantitative evaluations.

We also test on images of hand-drawn cadastral maps

so that performance of different approaches on line

drawings can be compared.

Parameters and thresholds All results shown in

this paper were generated using the parameter and

threshold values reported in Table 3. The second last

column contains values used for YorkUrbanDB images

and the last column is for line drawings.

Detection baselines To exhibit the general applica-

bility of our proposed ELSM method, we apply it over

the outputs of four different line segment detectors:

• Line Segment Detector (LSD) [15] 1

• Edge Drawing Lines (EDLines) [20] 2

• Markov Chain Marginal Line Segment Detector

(MCMLSD) [31]3 and

• Fast Line Segment Detector (FLD) [21]4.

Segments obtained from each detection method are

input to the merging pipelines of both LSM [12] 5

1http://www.ipol.im/pub/art/2012/gjmr-lsd/
2https://github.com/CihanTopal/ED_Lib
3https://www.elderlab.yorku.ca/mcmlsd/
4Python implementation within OpenCV.
5http://faculty.pucit.edu.pk/nazarkhan/work/line_
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Detected segments Poorly merged LSM segments Corresponding ELSM segments
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FIGURE 11: Benefit of image evidence based merging. Column 1: segments detected by four detectors LSD [15],
EDLines [20], MCMLSD [31], and FLD [21] on image 90 from YorkUrbanDB. They serve as input to the merging
methods. Column 2: poorly merged segments by LSM [12] since it considers line geometry only. Column 3: use
of image evidence in addition to line geometry allows the proposed ELSM method to prevent poor mergings.

and the proposed ELSM approach. All detection and

merging statistics are averaged over the four detection

methods.

merging/LSMDemo.zip

Since deep learning for line segment detection itself

is a nascent area of research, there are no existing deep

segment merging models. We analyse the effect of the

proposed ELSM approach on the outputs of four state-
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Detected segments Poorly merged LSM segments Corresponding ELSM segments

L
S

D
E

D
L

in
es

M
C

M
L

S
D

F
L

D

FIGURE 12: Benefit of image evidence based merging demonstrated on a cropped portion of image 5 from
YorkUrbanDB. The proposed ELSM method does not allow merged segments to move away from detected segments.

of-the-art deep line segment detection models:

• AFD [22]6: a CNN-based line segment detector

trained on YorkUrbanDB and Wireframe [18]

datasets,

• LETR [23]7: a transformer-based line segment

detector trained on YorkUrbanDB,

• Mobile-LSD [26]8: a light-weight model with real-

time detection speed, and

• F-Clip [38]9: an efficient and accurate fully

convolutional line parsing network.

Machine and software specifications All experi-

ments in this paper were carried out on an HP Envy

Model 15T-DR100 Core i7 10th generation system us-

6https://github.com/cherubicXN/afm_cvpr2019
7https://github.com/mlpc-ucsd/LETR
8https://github.com/navervision/mlsd
9https://github.com/Delay-Xili/F-Clip

TABLE 3: User-defined parameters and thresholds used
to generate all results on YorkUrbanDB images (York)
and line drawing images (LD) in this paper.

Name Use York LD
πs Spatial proximity 0.05 0.2
πt Thickness 1 1
πr Reference points 2 3
τθ Angular proximity 5◦ 5◦

τo Overlap tolerance 0.6 1
τe Segment evidence 0.8 0.6

ing Matlab R2015a software.

6. RESULTS AND ANALYSIS

The first columns in Figures 11 and 12 demonstrate

weaknesses of the four detection methods i.e. breaking

up perceptually connected lines into multiple segments.

The second columns demonstrate weakness of merging

via LSM. Since LSM considers geometric cues only, it
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LSD Multiscale LSD ELSM

FIGURE 13: Weakness of applying Multiscale LSD [16] on images 3,8,10 and 102 from YorkUrbanDB. Column

1: LSD [15] segments. Column 2: Multiscale LSD segments. Column3: ELSM results on LSD segments. Many
false positives can be observed in Multiscale LSD segments while our proposed ELSM approach reports segments
which are faithful to the underlying image data. For example, in the last row, windows in the building facade do
not support long line segments and ELSM, accordingly, yields smaller segments.

lacks global control over the merged segments. The

segments drawn as thick red lines have incrementally

strayed away from the underlying image data.

In contrast, the third columns demonstrate the

effectiveness of the proposed ELSM method. Since

it considers geometric as well as image based cues, it

continually rejects any merged segment that starts to

stray away from underlying image data. As a result,

the merged segments remain faithful to underlying

image data and retain perceptual validity as can be
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FIGURE 14: Deep learning based line detection models trained on urban scenes. Observation 1: They do not suffer
from over-segmentation seen in conventional gradient-based detectors. Therefore, our proposed merging approach
will not improve their output significantly. Observation 2: However, using current datasets and their annotations
with a strong Manhattan bias, they tend to yield inconsistent false negatives and false positives that can be hard
to explain away. Observation 3: Such dataset bias causes poor generalisation (for example, on a line drawing in
column 4) that a simple gradient-based detector will not suffer from.

seen by comparing the thick green segments in the

third columns to the thick red segments in the second

columns.

We show in Table 4 how the proposed ELSM method

yields a middle ground between over-segmentation

of conventional line segment detectors and excessive

merging of the LSM method. For all four conventional

detectors considered in this study, ELSM reduces the

average number of segments indicating that it merges

the detected segments. However, it does not merge

as much as LSM on average. This is not surprising

since LSM does not consider image evidence that could

have enabled it to reject incorrect mergings. Table 4

also shows that recent deep learning based detectors

do not suffer from over-segmentation since they learn

from human-marked ground-truth annotations that are

not broken at intersections and junctions. As a

consequence, they do not require as much merging of

their segments. However, the weaknesses of existing

deep models are highlighted in Figure 14.

The over-segmentation phenomenon of LSD has been

addressed by Multiscale LSD [16] which detects and

iteratively merges LSD segments at multiple scales.

The method produces longer segments compared to
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Without merging overlapping parallel segments After merging parallel overlapping segments

FIGURE 15: Left: Line drawings should be treated differently from natural imagery. Gradient change on both
sides of a line yields two parallel overlapping segments. Such segments are perceptually redundant but geometrically
and computationally problematic. Right: They can be allowed to merge by setting our overlap threshold τo to the
maximum possible value of 1.

Using two reference points on P Using three reference points on P

FIGURE 16: Benefit of more reference points. Left: Result from Figure 15 (right) annotated to show that small
line segments remain problematic. Using only two reference points (πr = 2) on the longer segment P in Equations
(3) and (4) leads to the formation of an incomplete spatial and angular proximal group GMP . This causes some line
segments (shown magnified) to remain unmerged leading to 81 line segments. Right: Using three reference points
(πr = 3) forms a more complete proximal group GMP that leads to 68 merged line segments that are less redundant
and perceptually improved.

LSD but results are not faithful to the underlying

image data. Figure 13 shows Multiscale LSD and

the proposed ELSM (on LSD) results on four images

from YorkUrbanDB. It can be observed that Multiscale

LSD still produces many false positives while all ELSM

segments are true representations of the scene since any

incorrect mergings are immediately rejected.

Deep Learning Approaches Figure 14 shows line

segments detected by four state-of-the-art deep learning

based models trained on urban and indoor imagery. We

make the following observations.

Observation 1: Deep models do not suffer from

over-segmentation seen in conventional gradient-based

detectors since they are trained on appropriately

segmented ground truth. Therefore, our proposed

merging approach will not improve their output
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LSD LSM ELSM

FIGURE 17: Line drawings require merging of significantly overlapping parallel line segments returned by LSD [15]
due to gradient change on both sides of each line. The LSM [12] method sometimes converges to globally incorrect
segments with no underlying image support. Use of image evidence prevents the proposed ELSM method from
straying away from image gradients. This results in globally correct segment merging.

TABLE 4: Comparison of mean number of segments per
image (rounded to the nearest integer) for all 102 images
of YorkUrbanDB averaged over four conventional
detection methods LSD [15], EDLines [20], MCMLSD
[31], and FLD [21] and four deep learning models
AFD, [22], LETR [23], Mobile-LSD [26], and FClip [38].
The proposed ELSM approach reduces the overmerging
phenomenon of LSM [12] for conventional detectors
since they require merging due to over-segmentation.
Deep learning based detectors do not oversegment and
therefore do not require significant merging.

Conventional Deep learning
Detected 637 121
LSM [12] 556 105
ELSM 613 119

TABLE 5: Average merging success r for LSM and
ELSM corresponding to the scenario of Table 4.
Proposed ELSM method yields segments that are closer
to the ground-truth on average.

Conventional Deep learning
LSM [12] 0.9982 0.9790
ELSM 1.0167 0.9966

TABLE 6: Comparison of average number of filtered
input and merged segments per image (rounded to the
nearest integer) for all 102 images of YorkUrbanDB.

Conventional
Detected 128
LSM [12] 102
ELSM 124

TABLE 7: Average merging success r for four
conventional and four deep learning techniques for
which number of segments are reported in Table 4.

Conventional
LSM [12] 0.9945
ELSM 1.0235

significantly. This is corroborated by Table 4 where

it can be seen that neither LSM nor ELSM significantly

reduced the average numbers of segments detected by

deep models.
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TABLE 8: Average runtime (seconds/image) for de-
tection and merging techniques computed over 102
YorkUrbanDB images with resolution 640 × 480.
LSD and EDLines are C++ implementations, FLD
is a Python implementation within OpenCV, and
MCMLSD, LSM, and ELSM are Matlab implementa-
tions.

Detection Merging
LSD EDLines MCMLSD FLD LSM ELSM
0.05 0.002 48.46 0.037 3.7 4.8

Observation 2: Using current datasets and their

annotations with a strong Manhattan bias, deep models

tend to yield inconsistent false negatives and false

positives that can be hard to explain away.

Observation 3: Such dataset bias causes poor

generalisation that a simple gradient-based detector will

not suffer from. For example, column 4 shows results

on a map image containing grid lines. Such an image

does not belong to the distribution of the training sets of

deep learning models that contain predominantly urban

images.

Quantitative Evaluation In Table 4, it can be

seen that averaged over four different conventional line

detection methods, the proposed ELSM method did not

suffer from the over-merging phenomenon of LSM [12].

This is true for four different deep learning models as

well, but not as significantly. This is because deep

learning models are trained on appropriately segmented

ground truth and therefore produce segments that do

not require much merging. Accordingly, ELSM did not

perform unnecessary merging when it was not required.

In Table 5, we report merging success r computed

from Equation (25). Here too, compared to segments

merged by LSM [12], ELSM produces merged segments

that are closer to ground-truth than detected segments

on average.

Runtime Statistics Average runtime in seconds per

image for detection and merging techniques is reported

in Table 8 for YorkUrbanDB [17]. Ignoring the fact

that ELSM is implemented in Matlab which is much

slower than compiled C++ code, its merging times are

not suitable for real-time applications yet. However,

the qualitative superiority of ELSM output makes it

useful for non-real-time applications. For instance,

it can be used to construct more complete ground-

truths for training deep learning models for line segment

detection. This is important since current ground-

truths are incomplete. ELSM can also be useful for

document understanding tasks such as cadastral map

extraction [42].

Line Drawings Line drawings are unlike natu-

ral/urban imagery. One significant difference is that

their lines are in the form of roof-edges in contrast to the

step-edge lines found in natural/urban imagery. Such

roof-edges have large gradients on both sides and pro-

duce two detections per line. It is important, therefore,

to tune the parameters and thresholds in Table 3 to

work well for line drawings.

The most important threshold is the overlap ratio

τo that needs to be set to its maximum value of 1 to

allow merging of close, parallel segments as exhibited

in Figure 15 for the case of hand-drawn reference grid

lines in a historical cadastral map.

The next important parameter is the number of

reference points πr to decide spatial proximity of line

segments. Using only two reference points (πr = 2) on

the longer segment P in Equations (3) and (4) leads to

an incomplete spatio-angular proximal group GMP which

leaves some segments unmerged. Using three reference

points (πr = 3) forms a more complete proximal

group GMP leading to less redundant and perceptually

improved merged segments as shown in Figure 16.
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Figure 17 demonstrates the benefit of using image

evidence in obtaining globally accurate mergings. LSM

[12] considers the geometry of line segments only

and can therefore iterate to a merged segment with

no underlying image support. This is prevented

in the proposed ELSM method by requiring every

intermediate as well as final merged segment to have

underlying image support via condition (17). As

a result, merged segments never iterate away from

detected segments. Not surprisingly, increasing πr from

2 to 3 had no impact on visual as well as quantitative

results on YorkUrbanDB images since they are not

characterised by roof-edges.

7. CONCLUSION

We have described a post hoc solution to the

over-segmentation phenomenon of gradient-based line

segment detectors. The proposed evidence-based

line segment merging algorithm ELSM restricts

geometrically merged segments to have underlying

image support as well. On images from YorkUrbanDB

we have shown that our method yields perceptually

accurate segments and that incremental, local merging

does not stray towards globally incorrect segments.

While deep learning models for line segment merging

do not exist yet, models for line segment detection

already yield reasonably segmented lines. As a

consequence, the proposed ELSM method does not

unnecessarily merge the output of deep models.

However, we do highlight how existing deep models

suffer from the Manhattan bias of line segment datasets

and give poor generalisation that a gradient-based line

segment detector will not suffer from.

We also experiment with parameter settings for

line drawings that are characterised by roof-edges in

contrast to natural imagery characterised by step-edges.

Perceptually relevant segments can be obtained by

allowing the parallel segments on both sides of roof-

edges to merge into one segment.

Finally, we describe a novel evaluation measure for

line segment merging algorithms based on Hausdorff

distance. Evaluation of our results demonstrates that

ELSMmerges segments in a way that brings them closer

to ground truth marked according to human perception.

As for future directions of research, in order for ELSM

to be applicable in real-time applications, the running

time needs to be improved. It will also be interesting

to measure the benefit of ELSM in 3D reconstruction,

document analysis, and other applications that rely on

line segments.

AVAILABILITY OF DATA AND MATERIALS

Source code and demo for the proposed ELSM

method will be placed online at https://github.com/

nazar-khan/ELSM upon acceptance of the paper.
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